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The emission rate of a point dipole can be strongly increased in presence of a well-designed optical
antenna. Yet, optical antenna design is largely based on radio-frequency rules, ignoring e.g. ohmic
losses and non-negligible field penetration in metals at optical frequencies. Here we combine reci-
procity and Poynting’s theorem to derive a set of optical-frequency antenna design rules for bench-
marking and optimizing the performance of optical antennas driven by single quantum emitters.
Based on these findings a novel plasmonic cavity antenna design is presented exhibiting a consider-
ably improved performance compared to a reference two-wire antenna. Our work will be useful for
the design of high-performance optical antennas and nanoresonators for diverse applications ranging
from quantum optics to antenna-enhanced single-emitter spectroscopy and sensing.

PACS numbers: 84.40.Ba, 73.20.Mf, 02.60.-x, 78.67.Bf

INTRODUCTION

Focusing optical antennas (FOAs) make use of plas-
monic resonances to convert propagating electromag-
netic waves at visible frequencies to near-fields localized
in nanoscale volumes much smaller than the diffraction
limit[1, 2]. In such a hot spot the local density of states
(LDOS) for point-like quantum emitters (QEs) may be
increased by a factor of 103 and possibly beyond [2–4],
which can be applied in novel light-based technologies,
e.g. quantum optics [5] and communication [6], sensing
[7] as well as scanning near-field microscopy [8]. The de-
sign of FOAs, which typically consist of single or multiple
particles of basic shapes [3, 6, 9–11], is largely inspired by
rules derived from the radio frequency (rf) regime. The
resulting antenna structures, however, can hardly be op-
timal for QE-FOA coupling, since there is no comparable
task in rf-technology. In addition the radiation behavior
of optical antennas differs from their rf-counterparts due
to ohmic losses and fields penetrating the antenna mate-
rial [12]. Yet, it has been shown that the Purcell factor
[13, 14] and likewise the antenna impedance [15] provide
a measure for emitter-antenna coupling based on the an-

tennas Green’s function [16].

Here we combine Poynting’s theorem [17] with reci-
procity [18] to quantify QE-FOA coupling by means
of a 3D overlap integral of the QE’s electric field and
the antenna’s mode current pattern (cf. mode matching
[19, 20]). Introducing a further mode-matching condition
for FOA to far-field coupling allows us to identify two in-
dependent FOA mode current patterns, which both max-
imize antenna radiation. This enables us to understand
the high performance of FOAs obtained from evolution-
ary optimization [21] as well as of other unusual FOA
geometries, like the indented nano-cone [22] or the dou-
ble hole resonator [23]. Finally, based on our new design
rules, an improved plasmonic cavity antenna geometry
is devised and numerically investigated. The flexibility
of the presented framework opens diverse applications
ranging from improved emitter-cavity coupling in quan-
tum optics to enhanced single-emitter sensing schemes.
It also provides new insights for the understanding and
optimization of complex-shaped metal nano-objects as
they appear in surface-enhanced Raman scattering sub-
strates [24].
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FIG. 1. (color online) General setup of a dipole p situated at
rp = (0, 0, rp) with an oscillating current jp being the source
of electromagnetic fields Ep. In its environment a metallic
nanoparticle is situated with a single excitable mode ν lead-
ing to scattered fields Ep/ν originating from source current
densities jp/ν .

THEORY

We consider a point dipole with dipole moment p sit-
uated at rp, emitting photons at wavenumber k with
unity quantum efficiency. The emitted power P of the
dipole in an arbitrary environment depends on the self-
interaction due to scattered fields Esc. The enhancement
of QE emission rate γ/γ0 as well as of the dipole emis-
sion power P/P0 in an inhomogeneous environment can
be calculated based on Poynting’s theorem [17]:

γ

γ0
=

P

P0
= 1 +

6πε0

|p|2
1

k3
Im {Esc(rp) · p∗} . (1)

Here γ0 and P0 are the vacuum values of the QE emis-
sion rate and dipole emission power, respectively. The
emission power enhancement depends on the backscat-
tered field components at the dipole position parallel to
the dipole moment. Equation (1) also takes into account
the phase between dipolar moment and scattered field
∆φ = φsc − φp [25]

Im {Esc(rp) · p∗} = |Esc(rp)| · |p| · Im
{
ei∆φ

}
. (2)

We define the scattering environment to be a general
FOA with its center of mass in the coordinate origin as
sketched in Fig. 1. It exhibits a set of plasmonic eigen-
modes at the emission wavelength of the QE which is
positioned on the z-axis at rp = (0, 0, rp) with k · rp � 1
and its dipole moment oriented along z. Its current den-
sity then can be written as jp = −iωp δ (r− rp). In the
following we assume without loss of generality only a sin-
gle relevant FOA mode ν. The scattered field in equation
(1) can then be expressed as:

Esc(rp) = iωµ0

∫
Vν

Ḡ0(rp, r
′)jν(r′) d3r′ , (3)

where Ḡ0(rp, r
′) is the Green’s tensor and jν is the

modes current density being the source of the scattered
field. For a FOA consisting of a local, dispersive and
lossy material, which is described by the dielectric func-
tion ε(ω), the reciprocity theorem implies the symmetry
Ḡ(rp, r

′) = Ḡ(r′, rp) of the Green’s tensor [18]. Inserted
into (3) the scattered fields now depend on the Green’s
function of the emitting dipole at rp evaluated inside the
volume of the FOA:

Esc(rp) = iωµ0

∫
Vν

Ḡ0(r′, rp)jν(r′) d3r′ . (4)

Exciting the FOA at resonance in the quasistatic limit
leads to ∆φ = π/2 and thus to Im

{
ei∆φ

}
= 1. Together

with (4) in (1) this leads to:

γ

γ0
=

P

P0
= 1 +

6πε0

|p|2
1

k3
·

· ωµ0

∫
Vν

∣∣Ḡ0(r′, rp)p jν(r′)
∣∣ d3r′(rp) . (5)

Using Ep(r) = ω2µ0Ḡ(r, rp)p we obtain the important
result:

P

P0
= 1 +

6πcε0

k4

∫
Vν

|Ep(r′) · jν(r′)| d3r′ , (6)

with c the speed of light in vacuum. This equation de-
scribes the fact that the total power extracted from a
point dipole into the ν-th antenna mode (i.e. the Purcell
factor) is described by the overlap integral of the mode’s
current density pattern with the point dipole fields in-
side the volume of the FOA, thereby defining a mode-
matching condition. To test the validity of this equation,
the analytical case of a dipole in front of a sphere has been
evaluated (Appendix I) and a numerical test on split-ring
antennas has been performed (Appendix II).

DISCUSSION

Equation (6) is reminiscent of mode matching for-
malisms used to determine coupling efficiencies between
waveguide modes [19, 20]. Here, however, the three-
dimensional volume of the FOA has to be considered.
From (6) three intuitive rules can be deduced: (i) Align
the dipole field and the antenna’s mode current pattern
everywhere inside the antenna volume. (ii) Maximize the
mode current at each point inside the plasmonic antenna.
This is mainly a material issue as j = σ ·Eν depends on
the conductivity σ. (iii) Maximize the volume of the over-
lap integral. This suggest the use of as much as possible
metal in the vicinity of the dipole. Rules (i) and (iii)
suggest that the established two-particle geometries may
not result in the best possible FOAs. Instead, a FOA
should enclose the QE as much as possible, resembling



3

a kind of plasmonic cavity antenna. Antennas that to
some extend fulfill these design rules in two dimensions
have already been realized and are known as double-hole
resonators[23].

So far we have only considered the transfer of energy
from the dipole to the antenna mode. However, a FOA
has two tasks, which have to been fulfilled by the antenna
mode field Eν = jν · σ−1 (see [26]): In addition to pro-
viding a maximal LDOS at the emitters position it also
has to couple efficiently to propagating far-fields. This
can be modeled by applying mode-matching according
to (6) again considering a dipole in the far-field oriented
parallel to the first dipole. Since the electric fields of the
second dipole at the FOA are plane waves, in order to
optimize far-field coupling, a homogeneous field Ec has
to be added to the dipolar near fields originating from the
QE close to the antenna. For a QE oriented along the
x-axis the optimal mode current pattern to fulfill both
mode-matching criteria is therefore a linear combination
of quasi-static dipolar contribution:

Ed =
1

4πε0

3n (np)− p

r3
, (7)

with the homogeneous field Ec = a · x̂:

Eν = Ed + Ec . (8)

By assuming a pure dipolar field we omit the refraction of
the fields at the antenna surface. This is a good approxi-
mation if the antenna material strongly deviates from an
ideal metal (for discussion see Appendix III). The scalar
factor a can be positive or negative, leading to two fun-
damentally different optimal focusing antenna mode cur-
rent patterns as illustrated in Fig. 2(a), which we denote
as ’n-type’ (left) and ’p-type’ (right) mode. Close to the
antenna hotspot in which the QE is positioned the dipo-
lar near-field Ed dominates. Away from the QE, Ed falls
off as 1/r3 and the homogeneous field starts to domi-
nate. For the n-type mode (p-type mode) isolated points
on the x-axis (a continuous circle in the y-z-plane) with
zero field strength appear (marked with white dashed
circles).

Figure 2(b) shows a mode current pattern of a FOA
that resulted from an evolutionary algorithm [21] with
the optimization goal to maximize the near-field in in
the center of the structure using a planar 30 nm thick
patterned gold layer at λ = 830 nm illuminated by a hor-
izontally polarized focused Gaussian beam. The current
pattern is identified as a p-type mode (areas with vanish-
ing fields marked with white dashed line): The antenna
center is surrounded by gold, realizing the 2D-equivalent
of a plasmonic cavity antenna. The currents switch direc-
tion on the y-axis to match the needs for optimal far-field
coupling. Since the antenna is sufficiently small and cen-
tered in a Gaussian focus, plane wave excitation can be
assumed. While a p-type mode current pattern can be

obtained in this 2D arrangement it cannot be realized
with benefits in 3D as discussed in Appendix IV.

Figure 2(c) introduces a 3D-plasmonic cavity antenna
supporting the n-type mode current pattern, which to our
knowledge has not yet been realized in an optical antenna
[27]. We choose a geometry with rotational symmetry
based on a reference antenna (two-wire dipole antenna,
10 nm gap, 15 nm wire diameter, spherical end caps,
overall length l = 110 nm made from gold, see small
black inset in Fig. 2(d)). The reference antenna has a
resonance at λ = 650 nm (black graph, Fig. 2(d)). To
realize the plasmonic cavity antenna, interconnects were
attached between the antenna arms to allow additional
current paths, enclosing the QE with gold. The length
of the plasmonic cavity antenna was tuned to also be
resonant at λ = 650 nm resulting in a slightly reduced
length of l = 104 nm, 5.5% shorter than the reference
antenna. The plasmonic cavity antenna is a single parti-
cle with a mode current pattern flowing uni-directionally
from end to end resembling a λ/2-resonance (see inset of
Fig. 2(c)). The mode current pattern also exhibits ar-
eas of vanishing fields along the x-axis, as expected for
an n-type mode (left panel of Fig. 2(a)). In contrary,
the reference antenna exhibits a λ-resonance [2] similar
to voltage-fed radio-frequency antennas [28].

Figure 2(d) shows the near-field intensity enhancement
spectra at the antenna center for both plasmonic cav-
ity antenna and reference antenna when illuminated by
a Gaussian focus with a numerical aperture of NA= 1.
Both antenna resonances peak at λ = 650 nm with a
near-field intensity enhancement of 2.79 · 103 (2.08 · 103)
for the plasmonic cavity antenna (reference antenna) and
a Q-factor Q = λ/∆λ of Q = 22.0 (Q = 27.1). The plas-
monic cavity antenna spectrum shows a second shallow
peak at 570 nm, due to a mode similar to that of the
reference antenna with a current density in x-direction
that does not change its direction. An analysis of the an-
tenna cross sections under plane wave illumination was
performed to identify the additional loss channels of the
plasmonic cavity antenna that lead to the 19% decreased
Q-factor. The plasmonic cavity antenna exhibits an ab-
sorption cross section of 4.17 · 104 nm2 and a scattering
cross section of 1.77 · 104 nm2, yielding a scattering ef-
ficiency of η = 0.298. The reference antenna exhibits
an absorption cross section of 2.34 · 104 nm2 and a scat-
tering cross section of 0.362 · 104 nm2 and, thus, a 55%
lower scattering efficiency of η = 0.134. Thus, the low-
ered Q-factor for the plasmonic cavity antenna is due
to increased radiation losses. According to [29], parti-
cles small compared to the impinging wavelength couple
best to the far-field, when both scattering and absorption
cross section are equal. Also, the plasmonic cavity an-
tenna mode currents from end to end resemble that of a
λ/2-antenna, which in rf-technology is known to radiate
most efficiently[28].

Although realizing an n-type mode current pattern,
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FIG. 2. (color online) Plasmonic antenna modes with double mode-matching. (a) x-y-cross section of the linear combination of
quasistatic dipolar field and constant field pointing in x-direction as described by equation (8) for a < 0 (left) and a > 0 (right).
The white dashed circles mark point of vanishing fields for better orientation in panel (b), showing the near field intensity
enhancement (color scale) and the current direction (white arrows) of a planar antenna geometry optimized an evolutionary
algorithm for maximum fields in the center (marked by small circle; scale-bar 100 nm)[21]. (c) Antenna design carrying
a resonant mode resembling panel (a) left. The originally rotational symmetric geometry is shown with a 90 cutaway for
improved visualization. Additionally the near-field intensity (color) as well as the current direction (green arrows) are overlay
for a quarter cross section. The small orange dot marks the center, where a QE is to be placed. (d) Near-field intensity
enhancement spectra at the green point in panel (c) (blue) as well as at the center of a two wire dipole reference antenna, with
identical end cap radius (black). The small insets show a x-y-plane cross section of both geometries.

the plasmonic cavity antenna design in Fig. 2(c) likely
does not represent the ultimate limit that can be achieved
in terms of near-field intensity enhancement since it has
been designed to be as similar as possible to the refer-
ence antenna. To find better designs and the optimal
magnitude of a in equation (8) will be a topic of future
research.

CONCLUSION

Reciprocity and Poyntings theorem can be combined
to obtain a three-dimensional mode-matching framework
for describing optimal coupling between a quantum emit-
ter and a plasmonic optical antenna. Based on this
framework we identified two fundamental mode current

patterns for optimal focusing optical antennas. Making
use of these new design rules for optical antennas the con-
cept of the plasmonic cavity antenna has been developed
which outperforms a two-wire reference antenna.

The developed framework will help to unravel the full
potential of focusing optical antennas and will help to
optimize e.g. TERS-tips and SERS substrates, making
use of novel complex and surprising geometries [22, 23].
Both near-field and far-field coupling tasks of an optical
antenna can be optimized rather independently yield-
ing a large flexibility to optimize antenna performance
for a variety of different tasks. An extension to multi-
particle multi-mode systems with retardation, where sev-
eral double mode-matching conditions define the over-
all far-field to near-field conversion efficiency will help to
better understand complex and large scale SERS-active
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substrates[24]. On the other hand, by deliberately avoid-
ing far-field coupling and concentrating on the quantum
emitter to antenna coupling only [4], nano cavities for
strong light matter coupling can be devised.
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Inserting eq. (9) into eq. (6) then leads to:

P

P0
= 1 +

6πε2
0

k3
·

· Im
{

(ε(ω)− 1)

∫
Vν

|Ep(r′) ·Eν(r′)| d3r′
}
. (10)

The dipole fields inside the sphere volume can be ex-
panded into Mie modes:

Ep(r, ω) =
∑
ν

Dν

[
pνM

(1)
ν (kr) + qνN

(1)
ν (kr)

]
(11)

M
(1)
ν and N

(1)
ν are the spherical vector wave functions,

as defined in [35] for a given set of control variables ν =
n,m, σ with n ∈ N,m ≤ n ∈ N and σ = odd or even,
Dν = ξ[(2n+ 1)(n−m)!]/[4n(n+ 1)(n+m)!] with ξ = 1
if m = 0 or ξ = 2 if m > 0, and

pν =
ik3

ε0π
M(3)

ν (kr0) · p (12)

qν =
ik3

ε0π
N(3)
ν (kr0) · p (13)

being prefactors originating from the Greens tensor[32].
The mode fields of the sphere read as [36]:

Esph(r) =
∑
ν

Dν

[
fνM

(1)
ν (k1r) + gνN

(1)
ν (k1r)

]
, (14)

with k1 = k ·
√
ε(ω), and the factors

fν = αnpν ; gν = βnqν , (15)

where αn and βn are complex valued Mie-like coefficients
which are derived from the boundary conditions for elec-
tric fields at the sphere surface [31].

For a sphere with small radius and small dipole dis-
tances R � rp � λ we can restrict our calculation to
the emission power enhancement due to the fundamental

dipolar sphere mode N
(1)
1,0,odd = Np leading to:

∫
Vsph

Ep ·Eν dV =

=

∫
Vsph

(D1q1,0,oddNp(kr)) ·

· (D1βq1,0,oddNp(k1r)) dV . (16)

Here we made use of the fact that the spherical vector
wave functions are orthogonal∫

Vsph

Aν ·B∗µ dV = 0 (17)

for A,B ∈ N(1),M(1) with A 6= B and arbitrary ν, µ.

In the limit of small spheres the terms of the integral
(16) can be developed into series of kR and krp respec-
tively, which leads to the following intermediate results:

q1 =
ik3

πε0

2

krp
· h1(krp) (18)

with h1(krp) = eikrp
(

1

krp
− i

(krp)2

)
(19)

β =
3

ε(ω) + 2
+O(k2R2) (20)

∫
Vsph

Np(kr
′) ·Np(k1r

′) d3r′ =
16

27
πR3 +O(R5) (21)

with h1 being the Hankel function of the first kind.
Putting the integral together with D1 = 3/8 and insert-
ing it into eq. (10) leads to the final result:

P

P0
= 1 +

3k3

2π
·

· Im
{
α0(ω)e2ikrp

[
1

(krp)4
− 2i

(krp)5
− 1

(krp)6

]}
, (22)

which is identical to the result in [34], yet with α0 =
4πR3(ε(ω) − 1)/(ε(ω) + 2) being the quasi-static polar-
izability of a small sphere. Taking more terms of β into
account the same result can be derived for the effective
polarizability including also radiative losses [37].

APPENDIX II: REVISITING THE
SPLIT-RING-ANTENNA

In [38] the split-ring-antenna (sketched in Fig. 3(a))
was introduced as a result of evolutionary optimization.
It has been shown that it outperforms a comparable two-
wire dipolar nano antenna, reasoned by the additional
current from the shortcut across the antenna gap en-
abling a split-ring like mode, which adds up construc-
tively with the dipolar antenna currents for charge accu-
mulation at the gap. Using the mode matching formalism
it can now be understand, that the short cut adds a cur-
rent path resembling dipolar fields in the very center of
the split ring antenna.

We use this system for a numerical test of the new
theory, as the SRA shows only one excitable antenna
mode. We chose two positions for the dipole, one in the
very center of the gap (green circle), one in the point of
highest fields along the y-axis in 11 nm distance from the
center (blue circle). The ratio of mode near-field at the
given positions is evaluated by illuminating the antenna
with a normalized Gaussian of NA= 1 and λ = 650 nm,
yielding a power ratio of Prel = Emax/Ecenter = 1.441. To
check the validity of eq. (6), it is integrated numerically
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a)

b)

FIG. 3. (color online) Evaluation of a split-ring antenna via
the mode-matching method. (a) geometry of split-ring an-
tenna as introduced in [38]. (b) Near-field intensity distribu-
tion in the center x-y-plane. The green and blue dot represent
the center of the antenna and the position of highest fields
along the y-axis, respectively (more information in text).

to obtain the mode-matching power enhancement factor
Pmm:

Pmm =
P

P0
∝
∑
r

Eν(r) ·Edip(r) . (23)

Here r indexes all Yee-Cells within the antenna vol-
ume. The antenna has a large enough field enhance-
ment, that direct far-field emission can be neglected. Eν
was calculated with the above mentioned Gaussian ex-
citation, the two Edip with a dipole source at a center
frequency λdip = 650 nm and a pulse length of ≈ 4
fs at the respective positions and a subsequent Fourier-
transformation to retrieve the quasi-static fields. The
ratio Pmm,max/Pmm,center = 1.451 differs from Prel only
by a factor of 0.007 which is within any error margin due
to numerical inaccuracies for the different light source
setups.

APPENDIX III: FIELD DISTORTION AT THE
AIR-GOLD INTERFACE

To prove the assumption that at optical frequencies the
fields of a dipole are not strongly altered by entering a
gold surface, the following figure of merit µ was devised:

µ =
1

V

∫
Edip,0(r) ·Edip,Au(r)

|Edip,0(r)| |Edip,Au(r)|
dV (24)

The numerator in the integral is a scalar product of Edip,0

the dipole fields in vacuum and Edip,Au the dipole fields in
gold at the same point in space r. Together with the nor-
malization denominator the integrand lies in the interval

dp

r

z
10 nm

0 2 4 6 8 10

penetration depth / nm

10-2

10-1

100

E
 /

 E
0

a)

b)

λ = 500 nm

λ = 1000 nm

FIG. 4. (color online) The rotational symmetric geometry for
the quasistatic test of field distortion. The center is filled with
a single point dipole situated in the very center of the void
made from vacuum. The surrounding is made from gold. The
circle denotes the region, in which eq. (24) is evaluated. The
minimal distance dp was set to 10 nm (see text for details).

[−1, 1], as does µ. The two fields are retrieved from two
different quasistatic simulations, where the field in the
gold material was retrieved from a simulation filled with
gold, except of a void in the very center shaped identically
to the cavity of the plasmonic cavity antenna (see Fig. 2
of the main manuscript) as depicted in Fig. 4(a). The
gold materials complex dielectric ε(λ) = ε′(λ) + i ε′′(λ)
was implemented following the Etchegoin model [30].

To define the outer border of the integration volume,
an estimation for the field penetration was performed as-
suming the dipole fields with a r−3-distance dependence
being additionally damped by a factor e−r/δ(λ) after en-
tering the material, with δ being the penetration depth
of surface plasmon fields on a plane metal/air interface
[17]:

δ1(λ) =
λ

2π

(
Im

(√
ε′(λ)2

ε′(λ) + 1

))− 1
2

(25)

The resulting field decay normalized to the surface field
strength for a dipole in a spherical cavity with a radius
of λ/100 for wavelengths from 500 to 1000 nm in steps
of 50 nm is depicted in Fig. 4(b). The minimal distance
dp between the void and the outer integration limit of
eq. (24) is set to dp = 10 nm, leading to an overall radius
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λ/nm µ µSphere

500 0.242 -1.000
550 -0.840 -0.999
600 -0.861 -0.999
650 -0.878 -0.998
700 -0.887 -0.998
750 -0.892 -0.998
800 -0.896 -0.997
850 -0.898 -0.997
900 -0.900 -0.996
950 -0.902 -0.996
1000 -0.903 -0.996

TABLE I. Field distortion for different dipole emission wave-
lengths λ. µ is the value for the plasmonic cavity antenna
center geometry as depicted in Fig. 4(a), while µsphere is the
same calculation performed for a dipole in a spherical void
(details in text).

of the integrated volume of 30 nm to ensure that all fields
decayed to < 0.1 of the surface field strength.

The resulting µ for a set of wavelengths λ is given
in Table I. Obviously, the values are near to -1 which
is expected since the fields acquire a phase shift of π on
entering a metal. The absolute values are large enough to
justify the assumption of nearly unperturbed dipole fields
and the mode patterns shown in Fig. 2(a) can therefore
be used as design guidelines. Finally, for λ = 500 nm
the absolute value of µ drops by a large margin. This
is the results of the mode between the two cavity tips
switching from a mode with no field node to one with
two field nodes as can be seen in Fig. 5. A non-negligible
portion of the field is now in phase with the excitation.

It has to be mentioned, that for the cavity shape being
spherical, µSphere < −0.995 is true for all examined wave-
lengths, when the sphere radius is set to r = λ/100 and
dp = 10 nm. This originates from the cavity showing
the identical symmetry as the dipolar fields. However,
the overlap integral and therefore the power transfer is
also dependent on the field strength, which can for long
wavelengths be optimized by tips and their correspond-
ing lightning rod effect. For short wavelengths near the
plasma frequency the metallic behavior gets less and less
pronounced and a spherical cavity with the lowest possi-
ble radius seems to ensure optimal coupling.

APPENDIX IV: N-TYPE MODE PLASMONIC
CAVITY ANTENNA

To realize a plasmonic cavity antenna with cylindri-
cal symmetry that exhibits a the n-type mode current
pattern while being similar to the reference antenna, the
two antenna wires have to be shortcut close to the feed-
point using a metal bridge shaped in a way that resem-
bles the dipole field loops. To asses the optimal thickness
of such a geometry we examine the approximative case

= 650 nmλ
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FIG. 5. Quasistatic near field intensity for λ = 650 nm (up-
per panel) and λ = 500 nm (lower panel) in the center region
of the plasmonic cavity antenna, which was used to evaluate
eq. (24). The plot shows a quarter of the cross section incor-
porating the axis of rotation. For λ = 500 nm an additional
field strength minimum has appeared, as a higher order mode
is getting excited.

of a spherical shell. Fig. 6 shows the near-field inten-
sity enhancement in the center of spherical shells for an
incoming plane wave with λ = 650 nm, while the shell
radius r and shell thickness d are varied (compare also
to [39]). For small shell radii with dimensions of typi-
cal optical antenna gaps, the resonant shell thickness has
to be comparably thin, between 1 and 3 nm. This can
be understood by an effective wavelength argument: The
geometry in Fig. 2(b) realizes the gap shortcut in a pla-
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FIG. 6. Resonances of sphere shells. (a) Sketch of an air
filled metal shell, with cutaway for better visibility of the
dimensions r, the inner radius and d, the shell thickness. (b)
Normalized electric fields in the very center (white circle) of
a gold nanoshell for a quasi-static excitation at λ = 650 nm
for changing shell radius and thickness.

nar gold sheet with 30 nm thickness via two wires with a
’rectangular’ cross section. To transform it to a 3D short-
cut, the ’height’ of the wire has to increase and its width
has to shrink to keep the overall shortcut cross section
area about constant to keep the identical effective plas-
mon wavelength and thus conserve the resonance peak
position[40].

Simply combining a plasmonic dipolar antenna with a
10 nm gap with a shell with r = 10 nm and d = 1 nm
results in the desired mode in quasi-static FEM simu-
lations (COMSOL). Yet, it was not possible to validate
the geometry by means of full wave FDTD simulations,
as down to a mesh size of 0.25 nm the stair-casing effect
of the thin spherical shell leads to a severe mode shift
and therefore to different NFIE spectra. Finer meshing
was not feasible due to large simulation times. We note
that this geometry would be of pure academic value, as
a 1 nm thick, smooth spherical gold shell filled with air
is far from experimental realization.
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