Data representation _g

o Not a number (NaN) is represented by setting the exponent to the highest positive
value and the mantissa to a non-zero value. The value of the sign bit is ignored.

o Subnormal numbers are used for representing values smaller than what can be
represented by normal values. The drawback is that the precision will decrease with
smaller values. The exponent is set to O to signify that the number is subnormal,
even though the number is treated as if the exponent was 1. Unlike normal numbers,
subnormal numbers do not have an implicit 1 as the most significant bit (the MSB)
of the mantissa. The value of a subnormal number is:

(-1)8 * 2(1-BIAS) x (Mantissa

where BIas is 127 and 1023 for 32-bit and 64-bit floating-point values, respectively.

Note: The IAR CLIB Library does not fully support the special cases of floating-point
numbers, such as infinity, NaN, and subnormal numbers. A library function which gets
one of these special cases of floating-point numbers as an argument might behave
unexpectedly.

Pointer types

The compiler has two basic types of pointers: function pointers and data pointers.

FUNCTION POINTERS

The size of function pointers is always 16 or 24 bits, and they can address the entire
memory. The internal representation of a function pointer is the actual address it refers
to divided by two.

These function pointers are available:

Keyword Address range Pointer size Description

__nearfunc 0-0x1FFFE 16 bits Can be called from any part of the
code memory, but must reside in the
first 128 Kbytes of that space.

__farfunc 0-0x7FFFFE 24 bits No restrictions on code placement.

Table 32: Function pointers

DATA POINTERS
Data pointers have three sizes: 8, 16, or 24 bits. These data pointers are available:

Pointer
Keyword) Memory space Index type Address range
size

__tiny 8 bits Data signed char 0x-0xFF

Table 33: Data pointers

287

Pointer types

Pointer
Keyword . Memory space Index type Address range
size
_ _near 16 bits Data signed int 0x0-0xXFFFF
__far 24 bits Data signed int 0x0-0xXFFFFFF
(16-bit arithmetics)
__huge 24 bits Data signed long 0x0-0xFFFFFF
__tinyflash 8 bits Code signed char 0x0-0xFF
__flash 16 bits Code signed int 0x0-0xXFFFF
__farflash 24 bits Code signed int 0x0-0xXFFFFFF
(16-bit arithmetic)
__hugeflash 24 bits Code signed long 0x0-0xFFFFFF
__eeprom 8 bits EEPROM signed char 0x0-0xFF
__eeprom 16 bits EEPROM signed int 0x0-0xXFFFF
__generic 16 bits Data/Code signed int The most significant bit
24 bits signed long (MSB) determines

whether __generic
points to CODE () or
DATA (0). The small
generic pointer is
generated for the
processor options -v0
and -v1.

Table 33: Data pointers (Continued)

Segmented data pointer comparison

Note that the result of using relational operators (<, <=, >, >=) on data pointers is only
defined if the pointers point into the same object. For segmented data pointers, only the
offset part of the pointer is compared when using these operators. For example:

void MyFunc (char _ far * p, char _ far * q)

{

if (p == g) /* Compares the entire pointers. */

if (p < g) /* Compares only the low 16 bits of the pointers. */

IAR C/C++ Compiler User Guide
288 for AVR

Data representation _g

CASTING

Casts between pointers have these characteristics:

o Casting a value of an integer type to a pointer of a smaller type is performed by
truncation

o Casting a value of an integer type to a pointer of a larger type is performed by zero
extension

Casting a pointer type to a smaller integer type is performed by truncation

Casting a pointer type to a larger integer type is performed via casting to the largest
possible pointer that fits in the integer

Casting a data pointer to a function pointer and vice versa is illegal
Casting a function pointer to an integer type gives an undefined result

Casting from a smaller pointer to a larger pointer is performed by zero extension

Casting from a larger pointer to a smaller pointer gives an undefined result.

size_t

size_t is the unsigned integer type of the result of the sizeof operator. In the IAR
C/C++ Compiler for AVR, the type used for size_t depends on the processor option
used:

Generic processor option Typedef
-v0and -v1 unsigned int
-v2, -v3, -v4, -v5,and -v6 unsigned long

Table 34: size t typedef

When using the Large or Huge memory model, the typedef for size_t is unsigned
long int.

Note that some data memory types might be able to accommodate larger, or only
smaller, objects than the memory pointed to by default pointers. In this case, the type of
the result of the sizeof operator could be a larger or smaller unsigned integer type.
There exists a corresponding size_t typedef for each memory type, named after the
memory type. In other words, __near_size_t for __near memory.

ptrdiff_t

ptrdiff_tisthe signed integer type of the result of subtracting two pointers. This table
shows the typedef of ptrdiff_t depending on the processor option:

289

Structure types

290

Generic processor option Typedef
-v0and -v1 unsigned int
-v2, -v3, -v4, -v5,and -v6 unsigned long

Table 35: ptrdif t typedef

Note that subtracting pointers other than default pointers could result in a smaller or
larger integer type. In each case, this integer type is the signed integer variant of the
corresponding size_t type.

Note: It is sometimes possible to create an object that is so large that the result of
subtracting two pointers in that object is negative. See this example:

char buff[60000]; /* Assuming ptrdiff_t is a 16-bit */
char *pl = buff; /* signed integer type. */

char *p2 = buff + 60000;

ptrdiff_t diff = p2 - pl; /* Result: -5536 */

intptr_t

intptr_t is asigned integer type large enough to contain a void *. In the IAR C/C++
Compiler for AVR, the type used for intptr_t is long int when using the Large or
Huge memory model and int in all other cases.

uintptr_t

uintptr_t is equivalent to intptr_t, with the exception that it is unsigned.

Structure types

IAR C/C++ Compiler User Guide
for AVR

The members of a struct are stored sequentially in the order in which they are
declared: the first member has the lowest memory address.

ALIGNMENT OF STRUCTURE TYPES

The struct and union types inherit the alignment requirements of their members. In
addition, the size of a struct is adjusted to allow arrays of aligned structure objects.

GENERAL LAYOUT

Members of a struct are always allocated in the order specified in the declaration.
Each member is placed in the struct according to the specified alignment (offsets).

